全國咨詢/投訴熱線:400-618-4000

人工智能基礎視頻教程:7天入門機器學習[傳智播客]

更新時間:2019年11月14日11時58分 來源:傳智播客 瀏覽次數:

機器學習教程

7天入門機器學習

初級

共7天課

在機器學習算法篇,你將學習到經典的機器學習算法,如KNN,線性回歸、嶺回歸、邏輯回歸,決策樹算法、KMeans算法、Bagging、隨機森林、GBDT等,深入淺出,帶你在掌握算法原理的同時,利用經典機器學習庫scikit-learn實現不同案例。

下載完整視頻(已有7246人下載)


一、課程簡介
人工智能入門第一課——從人工智能的概述、發展歷程和主要分支等內容切入講解,對人工智能進行宏觀的闡述。隨后著重講到兩個模塊:人工智能中科學計算庫和機器學習常見經典算法。
在人工智能科學計算庫中,你將會學習到,如何使用matplotlib進行繪圖;如何使用numpy進行運算;如何使用pandas對數據完成基本的預處理。
在機器學習算法篇,你將學習到經典的機器學習算法,如KNN,線性回歸、嶺回歸、邏輯回歸,決策樹算法、KMeans算法、Bagging、隨機森林、GBDT等,深入淺出,帶你在掌握算法原理的同時,利用經典機器學習庫scikit-learn實現不同案例。
最后,通過“吃雞”游戲,檢驗你自己的學習效果,生動體驗機器學習的魅力。
二、課程特色亮點
宏觀了解人工智能整體脈絡
化繁為簡、算法講解清晰明了
“學”和“做”結合,邊學習,邊練習,加深知識理解
結合“吃雞”游戲,體驗機器學習魅力所在
三、課程內容介紹
模塊一
•第一章 機器學習概述
1.人工智能概述
2.人工智能發展歷程
3.人工智能主要分支
4.機器學習工作流程
5.機器學習算法分類
6.模型評估
7.Azure機器學習模型搭建實驗
8.深度學習簡介
•第二章 機器學習基礎環境安裝與使用
1.庫的安裝
2.jupyter notebook使用
•第三章 Matplotlib
1.Matplotlib之HelloWorld
2.基礎繪圖功能 — 以折線圖為例
3.常見圖形繪制
•第四章 Numpy
1.Numpy的優勢
2.N維數組-ndarray
3.基本操作
4.ndarray運算
5.數組間的運算
6.數學:矩陣
•第五章 Pandas
1.Pandas介紹
2.Pandas數據結構
3.基本數據操作
4.DataFrame運算
5.Pandas畫圖
6.文件讀取與存儲
7.高級處理-缺失值處理
8.高級處理-數據離散化
9.高級處理-合并
10.高級處理-交叉表與透視表
11.高級處理-分組與聚合
12.案例
模塊二
•第一章 K-近鄰算法
1.K-近鄰算法簡介
2.k近鄰算法api初步使用
3.距離度量
4.k值的選擇
5.kd樹
6.案例1:鳶尾花種類預測--數據集介紹
7.特征工程-特征預處理
8.案例1:鳶尾花種類預測--流程實現
9.交叉驗證,網格搜索
10.案例2:預測facebook簽到位置
•第二章 線性回歸
1.線性回歸簡介
2.線性回歸api初步使用
3.數學:求導
4.線性回歸的損失和優化
5.梯度下降法方法介紹
6.線性回歸api再介紹
7.案例:波士頓房價預測
8.欠擬合和過擬合
9.正則化線性模型
10.線性回歸的改進-嶺回歸
11.模型的保存和加載
•第三章 邏輯回歸
1.邏輯回歸介紹
2.邏輯回歸api介紹
3.案例:癌癥分類預測-良/惡性乳腺癌腫瘤預測
4.分類評估方法
5.ROC曲線的繪制
•第四章 決策樹算法
1.決策樹算法簡介
2.決策樹分類原理
3.cart剪枝
4.特征工程-特征提取
5.決策樹算法api
6.案例:泰坦尼克號乘客生存預測
•第五章 集成學習
1.集成學習算法簡介
2.Bagging和隨機森林
3.Boosting
•第六章 聚類算法
1.聚類算法簡介
2.聚類算法api初步使用
3.聚類算法實現流程
4.模型評估
5.算法優化
6.特征工程-特征降維
7.案例:探究用戶對物品類別的喜好細分降維
8.算法選擇指導

推薦系統了解傳智播客人工智能課程。

領取資源

人妻系列无码专区_漂亮人妻被中出中文字幕_人妻中文制服巨乳中文